Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post‑Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial

    Publication Date
    Source Authors
    Source Title
    Source Issue
    Publication Date

    Novembre 2019

    Source Authors

    Hughes L., Rosenblatt B., Haddad F., Gissane C., McCarthy D., Clarke T., Ferris G., Dawes J., Paton B., Patterson S.D.

    Source Title

    Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post‑Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial

    Source Issue

    Sports Medicine

    49

    Page Range: 1787-1805

    I pazienti sottoposti a chirurgia di ricostruzione del legamento crociato anteriore (ACLR) possono sperimentare significative perdite di forza dell’arto inferiore dovute all’atrofia e all’inibizione artrogenica.
    La debolezza dei muscoli estensori e flessori del ginocchio è notevole durante le prime 12 settimane successive alla chirurgia e ciò, altera la funzione degli arti inferiori e la qualità della vita. Questa debolezza può persistere per anni dopo la chirurgia ed è associata a riduzioni croniche nella funzione, a rischi di nuovi infortuni e degenerazione articolare. In aggiunta, agire sulla debolezza muscolare nel processo di riabilitazione è un imperativo.
    Il principale obiettivo della riabilitazione dopo ACLR è ritornare ai livelli di funzione pre-lesione con un basso rischio di re-infortunio.
    Tra gli interventi suggeriti, ritroviamo l’allenamento di resistenza ai carichi pesanti (HL-RT) che utilizza carichi esterni del 65-70% del massimo di una ripetizione (1RM) individuale. Questo tipo di allenamento è consigliato per stimolare l’ipertrofia dei muscoli scheletrici e gli adattamenti della forza. Sebbene questo tipo di carichi descritti possano essere richiesti per aumentare la forza ad un livello soddisfacente, problemi come danni meniscali e contusioni ossee, possono controindicare l’intervento HL-RT nei pazienti sottoposti a ACLR con carico compromesso.
    Un altro tipo di intervento è il blood flow restriction (BFR) resistance training (BFR-RT). Quest’ultimo può elicitare l’ipertrofia muscolare e gli adattamenti della forza in popolazioni con carico compromesso, utilizzando carichi esterni leggeri del 20-30% 1RM che possono essere comparabili in grandezza al HL-RT. In aggiunta, il BFR-RT può ridurre il dolore e migliorare la funzione fisica e l’applicazione passiva della BFR può attenuare l’atrofia muscolare successiva alla chirurgia da ACLR.
    Per poter approfondire l’effetto di questo tipo di interventi, gli autori del presente articolo, hanno impostato uno studio per paragonare l’efficacia del BFR-RT e del HL-RT nel migliorare l’ipertrofia e la forza dei muscoli scheletrici, la funzione fisica, il dolore e il versamento nei pazienti con ricostruzione del legamento crociato anteriore durante un programma di riabilitazione post-chirurgica in un setting del Servizio Sanitario Nazionale.

    Sono stati dunque reclutati, in base a criteri di inclusione e di esclusione definiti nello studio, 28 pazienti che dovevano essere sottoposti a chirurgia unilaterale per ACLR.
    I partecipanti sono stati randomizzati in blocchi da 4 nel gruppo BFR-RT (n=14) oppure nel gruppo HL-RT (n=14) da un membro indipendente dal team di ricerca. Le tipologie e le modalità di applicazione degli interventi sono descritte all’interno dell’articolo.
    Per la valutazione dei risultati invece, sono stati presi in considerazione forza muscolare, morfologia muscolare, funzione fisica, dolore, ROM, versamento articolare e lassità dell’articolazione del ginocchio.

    L’articolo in esame analizza e descrive in maniera approfondita, anche con l’utilizzo di grafici e tabelle, i risultati degli interventi studiati. Non potendoli riportare interamente in questa sede, possiamo dire che il presente studio mostra che durante la fase riabilitativa di carico progressivo degli arti, il vantaggio dell’intervento BFR-RT rispetto al HL-RT è che può essere usato per raggiungere maggiori riduzioni del dolore e del versamento articolare. In aggiunta, il BFR-RT migliora la funzione fisica in misura superiore rispetto all’intervento HL-RT, senza alcun effetto dannoso sull’ipertrofia muscolare e sui miglioramenti della forza. Cosa interessante è che i risultati dello studio suggeriscono che il BFR-RT può compensare il declino della forza isocinetica osservato dopo la chirurgia e durante l’allenamento, utilizzando esercizio a catena cinetica chiusa.
    L’effetto dell’esercizio in popolazioni con condizioni muscoloscheletriche può essere ridotto per la presenza di dolore, con effetto dannoso sul controllo motorio e sulla funzione muscolare, determinando schemi di movimento modificati. Questo può ulteriormente sottolineare il vantaggio del BFR-RT sulla riduzione del dolore durante questa fase di riabilitazione per soggetti sottoposti ad ACLR. Inoltre, il BFR-RT può essere uno strumento superiore durante la prima parte di questa fase della riabilitazione, in particolare per i pazienti con altro grado di dolore e/o versamento.
    Una volta che i soggetti divengono fisicamente capaci, non si verificano modifiche del versamento articolare con attività in carico e il dolore è minimo/assente, il BFR-RT può essere integrato con HL-RT dato che, questa combinazione mostra aumento nella forza muscolare. Ciò consentirà la reintroduzione di maggiori carichi meccanici alle strutture del sistema muscolo-scheletrico e la stimolazione di altri adattamenti importanti durante la riabilitazione per ACLR che potrebbero non essere possibili con l’intervento BFR-RT, come la rigidità dei tendini.

    Concludendo, con i suoi punti di forza e di debolezza, questo studio dimostra che il BFR-RT può migliorare l’ipertrofia muscolo-scheletrica e la forza in maniera simile al HL-RT ma con maggiore riduzione del dolore articolare del ginocchio e del versamento, determinando miglioramenti complessivi più elevati nella funzione fisica. Inoltre, il BFR-RT può essere più appropriato nella fase riabilitativa di carico progressivo dell’arto successiva alla chirurgia per popolazioni di pazienti con ACLR.

    References

    1. Aagaard, P., Simonsen, E.B., Andersen, J.L., Magnusson, P., & DyhrePoulsen, P. (2002). Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol, 92, 2309–18.
    2. Abadie, B.R., & Wentworth, M.R. (2000). Prediction of one repetition maximal strength from a 5–10 repetition submaximal strength test in college-aged females. J Exerc Physiol, 3, 1–8.
    3. Abe, T., Loenneke, J.P., Fahs, C.A., Rossow, L.M., Thiebaud, R.S., & Bemben, M.G. (2012). Exercise intensity and muscle hypertrophy in blood flowrestricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging, 32, 247–52.
    4. Alkner, B.A., Tesch, P.A., & Berg, H.E. (2000). Quadriceps EMG/force relationship in knee extension and leg press. Med Sci Sport Exerc, 32, 459–63.
    5. AORN Recommended Practices Committee. (2007). Recommended practices for the use of the pneumatic tourniquet in the perioperative practice setting. AORN J, 86, 640–55.
    6. Beynnon, B.D., Uh, B.S., Johnson, R.J., Abate, J.A., Nichols, C.E., Fleming, B.C., et al. (2005). Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals. Am J Sports Med, 33, 347–59.
    7. Bieler, T., Aue Sobol, N., Andersen, L.L., Kiel, P., Løfholm, P., Aagaard, P., et al. (2014). The effects of high-intensity versus low-intensity resistance training on leg extensor power and recovery of knee function after ACL-reconstruction. Biomed Res Int, 2014, 1–11.
    8. Brandner, C.R., Warmington, S.A., & Kidgell, D.J. (2015). Corticomotor excitability is increased following an acute bout of blood flow restriction resistance exercise. Front Hum Neurosci, 9, 1–18.
    9. Briggs, K.K., Lysholm, J., Tegner, Y., Rodkey, W.G., Kocher, M.S., & Steadman, J.R. (2009). The reliability, validity, and responsiveness of the lysholm score and tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med 37, 890–7.
    10. Bryk, F.F., dos Reis, A.C., Fingerhut, D., Araujo, T., Schutzer, M., Cury, R.P.L., et al. (2016). Exercises with partial vascular occlusion in patients with knee osteoarthritis: a randomized clinical trial. Knee Surg Sport Traumatol Arthrosc, 24, 1580–6.
    11. Christensen, J.C., Goldfine, L.R., Barker, T., & Collingridge, D.S. (2015). What can the first 2 months tell us about outcomes after anterior cruciate ligament reconstruction? J Athl Train, 50, 508–15.
    12. Clagg, S., Paterno, M.V., Hewett, T.E., & Schmitt, L.C. (2015). Performance on the modified star excursion balance test at the time of return to sport following anterior cruciate ligament reconstruction. J Orthop Sport Phys Ther, 45, 444–52.
    13. Collins, N.J., Misra, D., Felson, D.T., Crossley, K.M., & Ross, E.M. (2011). Measures of knee function: international knee documentation committee (IKDC) subjective knee evaluation form, knee injury and osteoarthritis outcome score (KOOS), knee injury and osteoarthritis outcome score physical function short form (KOOS-PS). Arthritis Care Res, 63, 208–28.
    14. Cook, S.B., LaRoche. D.P., Villa, M.R., Barile, H., & Manini, T.M. (2017). Blood flow restricted resistance training in older adults at risk of mobility limitations. Exp Gerontol, 99, 138–45.
    15. Ellefsen, S., Hammarström, D., Strand, T.A., Zacharoff, E., Whist, J.E., Rauk, I., et al. (2015). Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am J Physiol Regul Integr Comp Physiol, 309, R767–79.
    16. Fatela, P., Reis, J.F., Mendonca, G.V., Avela, J., & Mil-Homens, P. (2016). Acute effects of exercise under different levels of blood-flow restriction on muscle activation and fatigue. Eur J Appl Physiol, 116, 985–95.
    17. Ferraz, R.B., Gualano, B., Rodrigues, R., Kurimori, C.O., Fuller, R., Lima, F.R, et al. (2017). Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sport Exerc, 50, 897–905.
    18. Filbay, S.R. (2017). Longer-term quality of life following ACL injury and reconstruction. Br J Sports Med, 52, 208–9.
    19. Folland, JP, & Williams, A.G. (2007). The adaptations to strength training: morphological and neurological contributions to increased strength. Sport Med, 37, 145–68.
    20. Fual, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39, 175–91.
    21. Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.M., et al. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43, 1334–59.
    22. Giles, L.S., Webster, K.E., McClelland, J.A., & Cook, J. (2015). Can ultrasound measurements of muscle thickness be used to measure the size of individual quadriceps muscles in people with patellofemoral pain? Phys Ther Sport, 16, 45–52.
    23. Giles, L., Webster, K.E., Mcclelland, J., & Cook, J.L. (2017). Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med, 51, 1688–94.
    24. Grapar Žargi, T., Drobnič, M., Vauhnik, R., Koder, J., & Kacin, A. (2016). Factors predicting quadriceps femoris muscle atrophy during the first 12 weeks following anterior cruciate ligament reconstruction. Knee, 24, 319–28.
    25. Hart, J.M., Pietrosimone, B., Hertel, J., & Ingersoll, C.D. (2010). Quadriceps activation following knee injuries: a systematic review. J Athl Train, 45, 87–97.
    26. Herrington, L., Myer, G., & Horsley, I. (2013). Task based rehabilitation protocol for elite athletes following anterior cruciate ligament reconstruction: a clinical commentary. Phys Ther Sport, 14, 188– 98.
    27. Hertel, J., Miller, S.J., & Denegar, C.R. (2000). lntratester and intertester reliability during the star excursion balance tests. J Sport Rehabil, 9, 104–16.
    28. Heyman, E., Gamelin, F., Goekint, M., Piscitelli, F., Roelands, B., Leclair, E., et al. (2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology, 37, 844– 51.
    29. Hughes, L., Jeffries, O., Waldron, M., Rosenblatt, B., Gissane, C., Paton, B., et al. (2018). Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ, 6, e4697.
    30. Hughes, L., Paton, B., Haddad, F., Rosenblatt, B., Gissane, C., & Patterson, S.D. (2018). Comparison of the acute perceptual and blood pressure response to heavy load and light load blood flow restriction resistance exercise in anterior cruciate ligament reconstruction patients and non-injured populations. Phys Ther Sport, 33, 54–61.
    31. Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S.D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med, 51, 1003–11.
    32. Hughes, L., Rosenblatt, B., Gissane, C., Paton, B., & Patterson, S.D. (2018). Interface pressure, perceptual and mean arterial pressure responses to different blood flow restriction systems. Scand J Med Sci Sports, 28, 1757–65.
    33. Hughes, L., Rosenblatt, B., Paton, B., & Patterson, S.D. (2018). Blood flow restriction training in rehabilitation following anterior cruciate ligament reconstructive surgery: a review. Tech Orthop, 00, 1–8.
    34. Hylden, C., Burns, T., Stinner, D., & Owens, J. (2015). Blood flow restriction rehabilitation for extremity weakness: a case series. J Spec Oper Med, 15, 50–6.
    35. Herrington, L., & Al-Sherhi, A. (2007). A controlled trial of weight-bearing versus non–weight-bearing exercises for patellofemoral pain. J Orthop Sport Phys Ther, 37, 155–60.
    36. Irrgang, J.J., Anderson, A.F., Boland, A.L., Harner, C.D., Kurosaka, M., Neyret, P., et al. (2001). Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med, 29, 600–13.
    37. Ithurburn, M.P., Altenburger, A.R., Thomas, S., Hewett, T.E., Paterno, M.V., & Schmitt, L.C. (2017). Young athletes after ACL reconstruction with quadriceps strength asymmetry at the time of return-to-sport demonstrate decreased knee function 1 year later. Knee Surg Sport Traumatol Arthrosc, 26, 426–33.
    38. Iversen, E., Røstad, V., & Larmo, A. (2016). Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Heal Sci, 5, 115–8.
    39. Kawakami, Y., Muraoka, Y., Kubo, K., Suzuki, Y., & Fukunaga, T. (2000). Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol, 7, 53–9.
    40. Keays, S.L., Bullock-Saxton, J.E., Newcombe, P., & Keays, A.C. (2003). The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res, 21, 231–7.
    41. Kılınç, B.E., Kara, A., Camur, S., Oc, Y., & Celik, H. (2015). Isokinetic dynamometer evaluation of the effects of early thigh diameter difference on thigh muscle strength in patients undergoing anterior cruciate ligament reconstruction with hamstring tendon graft. J Exerc Rehabil, 11, 95–100.
    42. Koltyn, K.F., Brellenthin, A.G., Cook, D.B., Sehgal, N., & Hillard, C. (2014). Mechanisms of exercise-induced hypoalgesia. J Pain, 15, 1294– 304.
    43. Korakakis, V., Whiteley, R., & Epameinontidis, K. (2018). Blood flow restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Phys Ther Sport, 32, 235–43.
    44. Korakakis, V., Whiteley, R., & Giakas, G. (2018). Low load resistance training with blood flow restriction decreases anterior knee pain more than resistance training alone. A pilot randomised controlled trial. Phys Ther Sport, 34, 121–8.
    45. Kubo, K., Komuro, T., Ishiguro, N., Tsunoda, N., Sato, Y., Ishii, N., et al. (2006). Effect of Low-Load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech, 22, 112–9.
    46. Ladlow, P., Coppack, R.J., Dharm-Datta, S., Conway, D., Sellon, E., Patterson, S.D., et al. (2018). Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: a single-blind randomized controlled trial. Front Physiol, 9, 1–14.
    47. Laurentino, G.C., Ugrinowitsch, C., Roschel, H., Aoki, M.S., Soares, A.G., Neves, M., et al. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc, 44, 406–12.
    48. Leffler, A., Hansson, P., & Kosek, E. (2002). Somatosensory perception in a remote pain-free area and function of diffuse noxious inhibitory controls (DNIC) in patients suffering from long-term trapezius myalgia. Eur J Pain, 6, 149–59.
    49. Libardi, C., Chacon-Mikahil, M., Cavaglieri, C.R., Tricoli, V., Roschel, H., Vechin, F.C., et al. (2015). Effect of concurrent training with blood flow restriction in the elderly. Int J Sports Med, 36, 395–9.
    50. Lixandrão, M.E., Ugrinowitsch, C., Berton, R., Vechin, F.C., Conceição, M.S., Damas, F., et al. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sport Med, 48, 361–78.
    51. Lixandrão, M.E., Ugrinowitsch, C., Laurentino, G., Libardi, C.A., Aihara, A.Y., Cardoso, F.N., et al. (2015). Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol, 115, 2471–80.
    52. Martín-Hernández, J., Marín, P., Menéndez, H., Loenneke, J.P., Coelho-e-Silva, M., García-López, D., et al. (2013). Changes in muscle architecture induced by low load blood flow restricted training. Acta Physiol Hung, 100, 411–8.
    53. Myer, G.D., Paterno, M.V., Ford, K.R., Quatman, C.E., & Hewett, T.E. (2006). Rehabilitation after anterior cruciate ligament reconstruction: criteriabased progression through the return-to-sport phase. J Orthop Sport Phys Ther, 36, 385–402.
    54. McEwen, J.A., Jeyasurya, J., & Owens, J. (2016). How can personalized tourniquet systems accelerate rehabilitation of wounded warriors, professional athletes and orthopaedic patients? CMBES, 39, 1–4.
    55. McNair, P.J., Colvin, M., & Reid, D. (2011). Predicting maximal strength of quadriceps from submaximal performance in individuals with knee joint osteoarthritis. Arthritis Care Res, 63, 216–22.
    56. Mikkelsen, C., Werner, S., & Eriksson, E. (2000). Closed kinetic chain alone compared to combined open and closed kinetic chain exercises for quadriceps strengthening after anterior cruciate ligament reconstruction with respect to return to sports: a prospective matched follow-up study. Knee Surg Sport Traumatol Arthrosc, 8,337–42.
    57. Munro, A.G., & Herrington, L.C. (2010). Between-session reliability of the star excursion balance test. Phys Ther Sport, 11, 128–32.
    58. Neuman P, Owman H, Müller G, Englund M, Tiderius CJ, & Dahlberg LE. (2014). Knee cartilage assessment with MRI (dGEMRIC) and subjective knee function in ACL injured copers: a cohort study with a 20 year follow-up. Osteoarthritis Cartilage, 22, 84–90.
    59. Noh, E., & An, C. (2015). Changes in pain, swelling, and range of motion according to physical therapy intervention after total knee arthroplasty in elderly patients. Phys Ther Rehabil Sci, 4, 79–86.
    60. Norkin, C.C., & White, J.D. (2003). Measurement of joint motion: a guide to goniometry. 3rd ed. Philadelphia: FA Davis Co.
    61. Ohta, H., Kurosawa, H., Ikeda, H., Iwase, Y., Satou, N., & Nakamura, S. (2003). Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand, 74, 62–8.
    62. Palmieri-Smith, R.M., Villwock, M., Downie, B., Hecht, G., & Zernicke, R. (2013). Pain and effusion and quadriceps activation and strength. J Athl Train, 48, 186–91.
    63. Perraton, L., Clark, R., Crossley, K., Pua, Y.H., Whitehead, T., Morris, H., et al. (2017). Impaired voluntary quadriceps force control following anterior cruciate ligament reconstruction: relationship with knee function. Knee Surg Sport Traumatol Arthrosc, 25, 1424–31.
    64. Pietrosimone, B., Lepley, A.S., Harkey, M.S., Luc-Harkey, B.A., Troy Blackburn, J., Gribble, P.A., et al. (2016). Quadriceps strength predicts selfreported function post-ACL reconstruction. Med Sci Sports Exerc, 48, 1671–7.
    65. Reynolds, J.M., Gordon, T.J., & Robergs, R.A. (2006). Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res, 20, 584–92.
    66. Rubin, A. (2012). Statistics for evidence-based practice and evaluation. Boston: Cengage Learning.
    67. Samaan, M.A., Ringleb, S.I., Bawab, S.Y., Greska, E.K., & Weinhandl, J.T. (2018). Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete. Comput Methods Biomech Biomed Eng, 21, 344–58.
    68. Schmitt, L.C., Paterno, M.V., & Hewett, T.E. (2012). The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sport Phys Ther, 42,750–9.
    69. Sharifnezhad, A., Marzilger, R., & Arampatzis, A. (2014). Effects of load magnitude, muscle length and velocity during eccentric chronic loading on the longitudinal growth of vastus lateralis muscle. J Exp Biol, 217, 2726–33.
    70. Shelbourne, K.D., Benner, R.W., & Gray, T. (2017). Results of anterior cruciate ligament reconstruction with patellar tendon autografts: objective factors associated with the development of osteoarthritis at 20 to 33 years after surgery. Am J Sports Med, 45, 2730–8.
    71. Scott, B.R., Loenneke, J.P., Slattery, K.M., & Dascombe, B.J. (2015). Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sport Med, 45, 313– 25.
    72. Soderberg, G.L., Ballantyne, B.T., & Kestel, L.L. (1996). Reliability of lower extremity girth measurements after anterior cruciate ligament reconstruction. Physiother Res Int, 1, 7–16.
    73. Tagesson, S., Öberg, B., Good, L., & Kvist, J. (2008). A comprehensive rehabilitation program with quadriceps strengthening in closed versus open kinetic chain exercise in patients with anterior cruciate ligament deficiency: a randomized clinical trial evaluating dynamic tibial translation and muscle function. Am J Sports Med, 36, 298–307.
    74. Takarada, Y., Takazawa, H., & Ishii, N. (2000). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc, 32, 2035–9.
    75. Tegner, Y., & Lysholm, J. (1985). Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res, 198, 43–9.
    76. Tennent, D.J., Burns, T.C., Johnson, A.E., Owens, J.G., & Hylden, C.M. (2018). Blood flow restriction training for postoperative lower-extremity weakness: a report of three cases. Curr Sports Med Rep, 17, 119–22.
    77. Thomeé, R., Kaplan, Y., Kvist, J., Myklebust, G., Risberg, M.A., Theisen, D., et al. (2011). Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sport Traumatol Arthrosc, 19, 1798–805.
    78. Thomas, A.C., Wojtys, E.M., Brandon, C., & Palmieri-Smith, R.M. (2016). Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport, 19, 7–11.
    79. Thorpe, J.L., & Ebersole, K.T. (2008). Unilateral balance in performance in female collegiate soccer athletes. J Strength Cond Res, 22, 1429–33.
    80. Timmins, R.G., Shield, A.J., Williams, M.D., Lorenzen, C., & Opar, D.A. (2016). Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med, 50, 1467– 72.
    81. Tobalina, J.C., Calleja-Gonzalez, J., De Santos, R.M., FernandezLópez, J.R., & Arteaga-Ayarza, A. (2013). The effect of basketball footwear on the vertical ground reaction force during the landing phase of drop jumps. Rev Psicol Del Deport, 22, 179–82.
    82. Turton, P., Hay, R., Taylor, J., McPhee, J., & Welters, I. (2016). Human limb skeletal muscle wasting and architectural remodeling during five to ten days intubation and ventilation in critical care—an observational study using ultrasound. BMC Anesthesiol, 16, 119.
    83. Tuveson, B., Leffler, A.S., & Hansson, P. (2006). Time dependant differences in pain sensitivity during unilateral ischemic pain provocation in healthy volunteers. Eur J Pain, 10, 225–32.
    84. Yasuda, T., Ogasawara, R., Sakamaki, M., Ozaki, H., Sato, Y., & Abe, T. (2011). Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol, 111, 2525–33.
    85. Wathan, D. (1994). Load assignment. In: Beachle TR, editor. (p. 435–9). Essentials of strength training and conditioning. Champaign, IL: Human Kinetics.
    86. World Medical Association. (2013). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Am Med Assoc, 2013, 2191–4.