La Tomografia computerizzata e la risonanza magnetica cardiaca nello studio della cardiopatia ischemica

    Publication Date
    Source Authors
    Source Title
    Source Issue
    Publication Date

    2017

    Source Authors

    Marc R. Dweck, Michelle C. Williams, Alastair J. Moss ,David E. Newb, Zahi A. Fayad

    Source Title

    La Tomografia computerizzata e la risonanza magnetica cardiaca nello studio della cardiopatia ischemica

    Source Issue

    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

    Numero 20, Volume 68

    Page Range: 2201-2216

    L’articolo pone l’attenzione sullo studio della cardiopatia ischemica attraverso l’utilizzo di due metodiche in particolare, la TC e la RM. La cardiopatia ischemica è un processo patologico complesso causato dallo sviluppo dell’aterosclerosi coronarica, con effetti a valle sul miocardio ventricolare sinistro. È caratterizzato da una lunga fase preclinica, da uno sviluppo improvviso dell’infarto miocardico e da stati patologici più cronici come angina stabile e cardiomiopatia ischemica. Grazie al progresso tecnologico in TC e RM è possibile studiare tutte le fasi della malattia.
    L’originalità del lavoro risiede nella possibilità di studiare tale patologia con metodiche non invasive (TC e RM) e mette a confronto entrambe le metodiche . Recenti progressi della tomografia computerizzata (CT) e della risonanza magnetica cardiaca (CMR) ora consentono l’imaging dettagliato di ognuna delle fasi della cardiopatia ischemica, potenzialmente consentendo il monitoraggio durante tutta la vita di un paziente . In particolare, la TC è emersa come la modalità non invasiva di scelta per l’imaging delle arterie coronarie, mentre la RM offre valutazioni dettagliate di perfusione, vitalità e funzionalità del miocardio. L’utilità clinica di queste tecniche è sempre più supportata da solidi dati di studi randomizzati, sebbene l’adozione diffusa della TC cardiaca e la RM richiederà ulteriori prove dell’efficacia clinica e dell’efficacia in termini di costi.
    Il lavoro si suddivide in più parti. All’inizio gli autori si soffermano su una breve spiegazione sulla patologia trattata, successivamente si focalizzano sullo studio di tale patologia con TC e RM e le differenze tra queste due metodiche. La cardiopatia schematica è una malattia cronica complessa caratterizzata da cambiamenti patologici isia nelle arterie coronarie che nel miocardio, e che comprende più fasi diverse e sindromi cliniche. L’ Imaging moderno non invasivo con tomografia computerizzata (CT) e risonanza magnetica cardiaca (CMR) ora ha la capacità di monitorare ognuna di queste diverse fasi. In particolare, TC consente l’imaging preciso dell’aterosclerosi coronarica (carico di placca, angiografia, caratteristiche avverse della placca), mentre la RM consente un’indagine cardiaca dettagliata (perfusione, visualizzazione dell’infarto, funzione), sebbene questa differenza tra le due metodiche stia diventando sempre più minima con progressi tecnologici. Questo documento fornisce una revisione completa dell’imaging TC e RM nelle cardiopatie ischemiche e confronta le loro potenzialità e limiti relativi. La discussione esamina la loro attuale applicazione clinica e i potenziali sviluppi futuri, nonché i notevoli ostacoli che esiste per l’adozione diffusa.

    BIBLIOGRAFIA

    1. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999;340:115–26.
    2. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol 2010;55:173–85.
    3. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.
    4. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 2013;368:2004–13.
    5. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93: 1354–63.
    6. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 1999;82:265–8.
    7. Dweck MR, Aikawa E, Newby DE, et al. Non invasive molecular imaging of disease activity in atherosclerosis. Circ Res 2016;119:330–40.
    8. Dweck MR, Doris MK, Motwani M, et al. Imaging of coronary atherosclerosis—evolution towards new treatment strategies. Nat Rev Cardiol 2016; 13:533–48.
    9. Vergallo R, Ren X, Yonetsu T, et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study. Am Heart J 2014;167:59–67.
    10. Davies MJ, Bland JM, Hangartner JR, et al. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 1989;10:203–8.
    11. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol 2015;65:846–55.
    12. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultraflash computed tomography. J Am Coll Cardiol 1990;15:827–32.
    13. Otsuka F, Finn AV, Virmani R. Do vulnerable and ruptured plaques hide in heavily calcified arteries? Atherosclerosis 2013;229:34–7.
    14. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 2007;50:319–26.
    15. Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014;383:705–13.
    16. Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA 2014;311: 271–8.
    17. Greenland P, LaBree L, Azen SP, et al. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004;291:210–5. erratum: JAMA 2004;291:563.
    18. Valenti V, ó Hartaigh B, Heo R, et al. A 15-year warranty period for asymptomatic individuals without coronary artery calcium: a prospective follow-up of 9,715 individuals. J Am Coll Cardiol Img 2015;8:900–9.
    19. Nasir K, Bittencourt MS, Blaha MJ, et al. Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association Cholesterol Management Guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2015;66:1657–68.
    20. Erbel R, Möhlenkamp S, Moebus S, et al., Heinz Nixdorf Recall Study Investigative Group. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 2010;56:1397–406.
    21. Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate- risk individuals. JAMA 2012;308:788–95.
    22. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Car- diol 2014;63:2889–934.
    23. Gitsioudis G, Schüssler A, Nagy E, et al. Com- bined Assessment of high-sensitivity troponin T and noninvasive coronary plaque composition for the prediction of cardiac outcomes. Radiology 2015;276:73–81.
    24. Vesey AT, Dweck MR, Fayad ZA. Utility of combining PET and MR imaging of carotid plaque. Neuroimaging Clin N Am 2016;26:55–68.
    25. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000;102:506–10.
    26. Dweck MR, Puntman V, Vesey AT, et al. MR imaging of coronary arteries and plaques. J Am Coll Cardiol Img 2016;9:306–16.
    27. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 2004;109: 14–7.
    28. Leber AW, Becker A, Knez A, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 2006;47:672–7.
    29. Weigold WG, Abbara S, Achenbach S, et al. Standardized medical terminology for cardiac computed tomography: a report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 2011;5:136–44.
    30. Thomsen C, Abdulla J. Characteristics of high- risk coronary plaques identified by computed tomographic angiography and associated prog- nosis: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 2016;17:120–9.
    31. Zhao L, Plank F, Kummann M, et al. Improved non-calcified plaque delineation on coronary CT angiography by sonogram-affirmed iterative reconstruction with different filter strength and relationship with BMI. Cardiovasc Diagn Ther 2015;5:104–12.
    32. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomog- raphy. J Am Coll Cardiol 2006;47:1655–62.
    33. Motoyama S, Ito H, Sarai M, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute cor- onary events in mid-term follow-up. J Am Coll Cardiol 2015;66:337–46.
    34. Dey D, Schepis T, Marwan M, et al. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US. Radiology 2010;257:516–22.
    35. Terashima M, Nguyen PK, Rubin GD, et al. Right coronary wall CMR in the older asymptom- atic advance cohort: positive remodeling and associations with type 2 diabetes and coronary calcium. J Cardiovasc Magn Reson 2010;12:75.
    36. Jansen CHP, Perera D, Makowski MR, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 2011;124: 416–24.
    37. Ehara S, Hasegawa T, Nakata S, et al. Hyper- intense plaque identified by magnetic resonance imaging relates to intracoronary thrombus as detected by optical coherence tomography in patients with angina pectoris. Eur Heart J Cardiovasc Imaging 2012;13:394–9.
    38. Kawasaki T, Koga S, Koga N, et al. Characterization of hyperintense plaque with noncontrast T1-weighted cardiac magnetic resonance coronary plaque imaging. J Am Coll Cardiol Img 2009;2: 720–8.
    39. Noguchi T, Kawasaki T, Tanaka A, et al. High- intensity signals in coronary plaques on non- contrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol 2014;63:989–99.
    40. Emond M, Mock MB, Davis KB, et al. Long- term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 1994;90:2645–57.
    41. Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography [Published correction appears in N Engl J Med 2010;363:498]. N Engl J Med 2010;362:886–95.
    42. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, et al. Diagnostic performance of multi- detector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 2007;244:419–28.
    43. Miller JM, Rochitte CE, Dewey M, et al. Diag- nostic performance of coronary angiography by 64-row CT. N Engl J Med 2008;359:2324–36.
    44. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008;52:1724–32.
    45. Menke J, Kowalski J. Diagnostic accuracy and utility of coronary CT angiography with consider- ation of unevaluable results: a systematic review and multivariate Bayesian random-effects meta- analysis with intention to diagnose. Eur Radiol 2016;26:451–8.
    46. Achenbach S, Manolopoulos M, Schuhbäck A, et al. Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J Cardiovasc Comput Tomogr 2012;6: 91–8.
    47. Danad I, Fayad ZA, Willemink MJ, et al. New applications of cardiac computed tomography: dual-energy, spectral, and molecular CT imaging. J Am Coll Cardiol Img 2015;8:710–23.
    48. The SCOT-HEART Investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lan- cet 2015;385:2383–91.
    49. Min JK, Shaw LJ, Devereux RB, et al. Prog- nostic value of multidetector coronary computed tomographic angiography for prediction of all- cause mortality. J Am Coll Cardiol 2007;50: 1161–70.
    50. Hadamitzky M, Täubert S, Deseive S, et al. Prognostic value of coronary computed tomogra- phy angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur Heart J 2013;34:3277–85.
    51. Task Force Members, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 2013;34:2949–3003.
    52. Douglas PS, Hoffmann U, Patel MR, et al., PROMISE Investigators. Outcomes of anatomical versus functional testing for coronary artery dis- ease. N Engl J Med 2015;372:1291–300.
    53. Williams MC, Hunter A, Shah ASV, et al., SCOT- HEART Investigators. Use of coronary computed tomographic angiography to guide management of patients with coronary disease. J Am Coll Car- diol 2016;67:1759–68.
    54. Bittencourt MS, Hulten EA, Murthy VL, et al. Clinical outcomes after evaluation of stable chest pain by coronary computed tomographic angiog- raphy versus usual care: a meta-analysis. Circ Cardiovasc Imaging 2016;9:e004419.
    55. Goldstein JA, Chinnaiyan KM, Abidov A, et al., CT-STAT Investigators. The CT-STAT (Coronary Computed Tomographic Angiography for System- atic Triage of Acute Chest Pain Patients to Treat- ment) trial. J Am Coll Cardiol 2011;58:1414–22.
    56. Hoffmann U, Truong QA, Schoenfeld DA, et al., ROMICAT-II Investigators. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med 2012;367:299–308.
    57. Litt HI, Gatsonis C, Snyder B, et al. CT angi- ography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med 2012;366:1393–403.
    58. Hulten E, Pickett C, Bittencourt MS, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol 2013;61: 880–92.
    59. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345: 1863–9.
    60. Schuetz GM, Zacharopoulou NM, Schlattmann P, et al. Meta-analysis: noninvasive coronary angiography using computed tomogra- phy versus magnetic resonance imaging. Ann Intern Med 2010;152:167–77.
    61. Yonezawa M, Nagata M, Kitagawa K, et al. Quantitative analysis of 1.5-T whole-heart coronary MR angiograms obtained with 32-channel cardiac coils: a comparison with conventional quantitative coronary angiography. Radiology 2014;271:356–64.
    62. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 2010;55: 2614–62.
    63. Rochitte CE, George RT, Chen MY, et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfu- sion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J 2014;35:1120–30.
    64. Pelgrim GJ, Dorrius M, Xie X, et al. The dream of a one-stop-shop: meta-analysis on myocardial perfusion CT. Eur J Radiol 2015;84:2411–20.
    65. Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coro- nary computed tomographic angiograms. Results from the prospective multicenter DISCOVER- FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011;58:1989–97.
    66. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 2012;308:1237–45.
    67. Li S, Tang X, Peng L, et al. The diagnostic performance of CT-derived fractional flow reserve for evaluation of myocardial ischaemia confirmed by invasive fractional flow reserve: a meta-anal- ysis. Clin Radiol 2015;70:476–86.
    68. Douglas PS, Pontone G, Hlatky MA, et al., PLATFORM Investigators. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J 2015;36:3359–67.
    69. Schwitter J, Wacker CM, Wilke N, et al., MR- IMPACT Investigators. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single- photon emission computed tomography for the detection of coronary artery disease: a compara- tive multicentre, multivendor trial. Eur Heart J 2013;34:775–81.
    70. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single- photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 2012;379:453–60.
    71. Greenwood JP, Herzog BA, Brown JM, et al. Prognostic value of cardiovascular magnetic resonance and single-photon emission computed tomography in suspected coronary heart disease: long-term follow-up of a prospective, diagnostic accuracy cohort study. Ann Intern Med 2016;165: 1–9.
    72. Jaarsma C, Leiner T, Bekkers SC, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic reso- nance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 2012; 59:1719–28.
    73. Coelho-Filho OR, Seabra LF, Mongeon FP, et al. Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient’s sex. J Am Coll Cardiol Img 2011;4:850–61.
    74. Walker S, Girardin F, McKenna C, et al. Cost- effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart 2013;99:873–81.
    75. Charoenpanichkit C, Hundley WG. The 20 year evolution of dobutamine stress cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010;12:59.
    76. Adams DF, Hessel SJ, Judy PF, et al. Computed tomography of the normal and infarcted myocardium. AJR Am J Roentgenol 1976;126:786–91.
    77. Matsuda T, Kido T, Itoh T, et al. Diagnostic accuracy of late iodine enhancement on cardiac computed tomography with a denoise filter for the evaluation of myocardial infarction. Int J Car- diovasc Imaging 2015;31 Suppl 2:177–85.
    78. Reimann AJ, Kuettner A, Klumpp B, et al. Late enhancement using multidetector row computer tomography: a feasibility study with low dose 80 kV protocol. Eur J Radiol 2008;66:127–33.
    79. McCrohon JA, Moon JCC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54–9.
    80.  80.Kim HW, Farzaneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications. J Am Coll Cardiol 2009;55:1–16.
    81. Gulati A, Jabbour A, Ismail TF, et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated car- diomyopathy. JAMA 2013;309:896–908.
    82. Dweck MR, Joshi S, Murigu T, et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 2011;58:1271–9.
    83. Kelle S, Roes SD, Klein C, et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 2009;54:1770–7.
    84. Eitel I, de Waha S, Wöhrle J, et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014;64:1217–26.
    85. Kwong RY, Chan AK, Brown KA, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 2006;113:2733–43.
    86. Schelbert EB, Cao JJ, Sigurdsson S, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA 2012; 308:890–6.
    87. Kwong RY, Sattar H, Wu H, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without   clinical   evidence   of myocardialinfarction. Circulation 2008;118:1011–20.
    88. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–53.
    89. Beek AM, Kühl HP, Bondarenko O, et al. Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 2003;42:895–901.
    90. Gutberlet M, Fröhlich M, Mehl S, et al. Myocardial viability assessment in patients with highly impaired left ventricular function: compar- ison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201- SPECT with functional recovery after revasculari- zation. Eur Radiol 2005;15:872–80.
    91. Glaveckaite S, Valeviciene N, Palionis D, et al. Value of scar imaging and inotropic reserve com- bination for the prediction of segmental and global left ventricular functional recovery after revascularisation. J Cardiovasc Magn Reson 2011; 13:35.
    92. Knuesel PR, Nanz D, Wyss C, et al. Characterization of dysfunctional   myocardium   by positron emission tomography and magnetic resonance:  relation  to  functional  outcome  after    revascularization.    Circulation    2003;108: 1095–100.
    93. Shah DJ, Kim HW, James O, et al. Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease. JAMA 2013;309:909–18.
    94. Bonow RO, Maurer G, Lee KL, et al., STICH Trial Investigators. Myocardial viability and sur- vival in ischemic left ventricular dysfunction. N Engl J Med 2011;364:1617–25.
    95. Friedrich MG, Abdel-Aty H, Taylor A, et al. The salvaged area at risk in reperfused acute myocar- dial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 2008;51: 1581–7.
    96. Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and subclinical myocardial pathology. Eur Heart J 2012;33: 1268–78.
    97. Weinsaft JW, Kim RJ, Ross M, et al. Contrast- enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular thrombus. J Am Coll Cardiol Img 2009;2:969–79.
    98. Mollet NR, Dymarkowski S, Volders W, et al. Visualization of ventricular thrombi with contrast- enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation 2002;106: 2873–6.
    99. Daftari Besheli L, Aran S, Shaqdan K, et al. Current status of nephrogenic systemic fibrosis. Clin Radiol 2014;69:661–8.
    100. Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015;276: 228–32.
    101. U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI). U.S. Food and Drug Administration. July 27, 2015. Available at: http://www.fda.gov/Drugs/DrugSafety/ucm455386. htm. Accessed August 31, 2016.