Magnetic resonance imaging of the chest in the evaluation of cancer patients: state of the art

    Publication Date
    Source Authors
    Source Title
    Source Issue
    Publication Date

    2015

    Source Authors

    Marcos Duarte Guimaraes1, Bruno Hochhegger2, Marcel Koenigkam Santos3, Pablo Rydz Pinheiro Santana4 ,Arthur Soares Sousa Júnior5, Luciana Soares Souza6, Edson Marchiori7

    Source Title

    Magnetic resonance imaging of the chest in the evaluation of cancer patients: state of the art

    Source Issue

    Radiologia Brasileira

    3

    Page Range: 83-85

    La risonanza magnetica per immagini (MRI) presenta numerosi vantaggi nella valutazione dei pazienti oncologici con lesioni toraciche, compreso il coinvolgimento della parete toracica, della pleura, dei polmoni, del mediastino, dell’esofago e del cuore. È uno strumento molto utile nella diagnosi, nella stadiazione, nella pianificazione chirurgica, nella valutazione della risposta al trattamento e nel follow-up di questi pazienti. Nella presente revisione, gli autori contestualizzano la rilevanza della risonanza magnetica nella valutazione delle lesioni toraciche nei pazienti oncologici. Considerando che la risonanza magnetica è un metodo ampiamente disponibile con contrasto elevato e risoluzione spaziale e senza i rischi associati all’uso di radiazioni ionizzanti, il suo utilizzo combinato con nuove tecniche come la cine-MRI e metodi funzionali come l’imaging pesato in perfusione e diffusione può essere utile come strumento alternativo con prestazioni paragonabili o complementari ai metodi radiologici convenzionali come la radiografia, la tomografia computerizzata e l’imaging PET / TC nella valutazione di pazienti con neoplasie toraciche.

    References

    1. Ott JJ, Ullrich A, Mascarenhas M, et al. Global cancer incidence and mortality caused by behavior and infection. J Public Health (Oxf). 2011;33:223–33.
    2. Schottenfeld D, Beebe-Dimmer JL, Buffler PA, et al. Current perspective on the global and United States cancer burden attributable to lifestyle and environmental risk factors. Annu Rev Public Health. 2013;34:97–117.
    3. Bragg DG. State-of-the-art assessment. Diagnostic oncologic imaging. Cancer. 1989;64(Suppl):261–5; discussion 269–71.
    4. López-Encuentra A, García-Luján R, Rivas JJ, et al. Comparison between clinical and pathologic staging in 2,994 cases of lung cancer. Ann Thorac Surg. 2005;79:974–9.
    5. Adsay NV, Basturk O, Saka B. Pathologic staging of tumors: pitfalls and opportunities for improvements. Semin Diagn Pathol. 2012;29:103–8.
    6. Hochhegger B, Marchiori E, Irion K, et al. Magnetic resonance of the lung: a step forward in the study of lung disease. J Bras Pneumol. 2012;38:105–15.
    7. García Figueiras R, Padhani AR, Vilanova JC, et al. Functional imaging of tumors. Part 1. Radiologia. 2010;52:115–25.
    8. Kauczor HU, Ley S. Thoracic magnetic resonance imaging 1985 to 2010. J Thorac Imaging. 2010;25:34–8.
    9. Kauczor HU, Ley-Zaporozhan J, Ley S. Imaging of pulmonary pathologies: focus on magnetic resonance imaging. Proc Am Thorac Soc. 2009;6:458–63.
    10. Puderbach M, Hintze C, Ley S, et al. MR imaging of the chest: a practical approach at 1.5T. Eur J Radiol. 2007;64:345–55.
    11. Guimaraes MD, Gross JL, Chojniak R, et al. MRI-guided biopsy: a valuable procedure alternative to avoid the risks of ionizing radiation from diagnostic imaging methods. Cardiovasc Intervent Radiol. 2014;37:858–60.
    12. Takenaka D, Ohno Y, Matsumoto K, et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of wholebody diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging. 2009;30:298–308.
    13. Richman SD, Chambers P, Seymour MT, et al. Intra-tumoral heterogeneity of KRAS and BRAF mutation status in patients with advanced colorectal cancer (aCRC) and cost-effectiveness of multiple sample testing. Anal Cell Pathol (Amst). 2011;34:61–6.
    14. Chowdhury S, Ongchin M, Sharratt E, et al. Intra-tumoral heterogeneity in metastatic potential and survival signaling between isoclonal HCT116 and HCT116b human colon carcinoma cell lines. PLoS One. 2013;8:e60299.
    15. Nava D, Oliveira HC, Luisi FA, et al. Aplicação da ressonância magnética de corpo inteiro para o estadiamento e acompanhamento de pacientes com linfoma de Hodgkin na faixa etária infanto-juvenil: comparação entre diferentes sequências. Radiol Bras. 2011; 44:29–34.
    16. Asai N, Ohkuni Y, Shoji K, et al. Efficacy of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in evaluating lung cancer recurrence. J Bras Pneumol. 2013;39:242–4.
    17. Dias OM, Lombardi EM, Canzian M, et al. 18F-fluorodeoxyglucose positron emission tomography as a noninvasive method for the diagnosis of primary pulmonary artery sarcoma. J Bras Pneumol. 2011;37:817–22.
    18. Schwenzer NF, Pfannenberg C, Reischl G, et al. Application of MR/PET in oncologic imaging. Rofo. 2012;184:780–7.
    19. Berker Y, Franke J, Salomon A, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.
    20. Yankeelov TE, Peterson TE, Abramson RG, et al. Simultaneous PET-MRI in oncology: a solution looking for a problem? Magn Reson Imaging. 2012;30:1342–56.
    21. Vallières E, Peters S, Van Houtte P, et al. Therapeutic advances in non-small cell lung cancer. Thorax. 2012;67:1097–101.
    22. Campo-Cañaveral de la Cruz JL, Herrero Collantes J, Sánchez Lorente D, et al. Chest wall surgery. Arch Bronconeumol. 2011;47Suppl 3:15–24.
    23. Kalia M. Personalized oncology: recent advances and future challenges. Metabolism. 2013;62 Suppl 1:S11–4.
    24. Figueiras RG, Padhani AR, Goh VJ, et al. Novel oncologic drugs: what they do and how they affect images. Radiographics. 2011;31: 2059–91.
    25. Goldfarb R, Ongseng F, Finestone H, et al. Oncologic imaging: state of the art and research priorities. Am J Clin Oncol. 1989;12: 178.
    26. Kajiwara N, Akata S, Uchida O, et al. Cine MRI enables better therapeutic planning than CT in cases of possible lung cancer chest wall invasion. Lung Cancer. 2010;69:203–8.
    27. Martí-Bonmatí L, Sopena R, Bartumeus P, et al. Multimodality imaging techniques. Contrast Media Mol Imaging. 2010;5:180–9.
    28. Chawla SC, Federman N, Zhang D, et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5- year retrospective review. Pediatr Radiol. 2010;40:681–6.
    29. Calegaro JUM. Baixos níveis de radiação ionizante causam câncer? Radiol Bras. 2007;40(4):ix–x.
    30. Hall EJ, Brenner DJ. Cancer risk from diagnostic radiology: the impact of new epidemiological data. Br J Radiol. 2012;85:e1316–7.
    31. Brenner DJ, Hall EJ. Cancer risk from CT scans: now we have data, what next? Radiology. 2012;265:330–1.
    32. Brenner DJ. Effective dose: a flawed concept that could and should be replaced. Br J Radiol. 2008;81:521–3.
    33. Sachs RK, Brenner DJ. Solid tumor risks after high doses of ionizing radiation. Proc Natl Acad Sci U S A. 2005;102:13040–5.
    34. O’Neill SB, O’Connor OJ, McWilliams SR, et al. Minimization ofradiation exposure due to computed tomography in inflammatory bowel disease. Clin Res Hepatol Gastroenterol. 2011;35:105–10.
    35. Santos MK, Elias J Jr, Mauad FM, et al. Magnetic resonance imaging of the chest: current and new applications, with an emphasis on pulmonology. J Bras Pneumol. 2011;37:242–58.
    36. Hochhegger B, Marchiori E, Irion K, et al. MRI in assessment of lung cancer. Thorax. 2011;66:357.
    37. Razek AA. Diffusion magnetic resonance imaging of chest tumors. Cancer Imaging. 2012;12:452–63.