MRI Techniques to Decrease Imaging Times in Children

    Publication Date
    Source Authors
    Source Title
    Source Issue
    Publication Date

    Marzo-Aprile 2020

    Source Authors

    Benjamin M. Kozak, MD Camilo Jaimes, MD John Kirsch, PhD Michael S. Gee, MD, PhD

    Source Title

    MRI Techniques to Decrease Imaging Times in Children

    Source Issue

    Journal od Advanced Health Care

    40

    Page Range: 1-18

    Questo recentissimo articolo s’inserisce nel campo della radiologia pediatrica: in particolare sono esaminati le tecniche di RM disponibili, e quelle ancora in fase di sperimentazione, per ridurre il tempo di scansione.

    I lunghi tempi di esecuzione di un esame di risonanza magnetica richiedono spesso, soprattutto per la fascia di pazienti da 6mesi a 6anni, sedazioni e/o anestesia generale, con tutti i svantaggi correlati.

    Negli ultimi anni sono state validate e commercializzate diverse tecniche che riducono il tempo di scansione, tra queste:

    • Imaging parallelo (SENSE)
    • Eccitazione simultanea di più sezioni dello strato in esame
    • Acquisizione del K-spazio radiale
    • Compressed SENSE
    • Software di selezione automatica del protocollo

    In questo articolo sono chiariti tutti i concetti sottostanti queste tecniche, i dati a supporto, le applicazioni cliniche, e tutti i prodotti disponibili per ciascuna tecnica. Inoltre sono discusse tecniche, che ridurrebbero ulteriormente il tempo di scansione, ancora in fase di sviluppo quali:

    • Ricostruzione basata sull’intelligenza artificiale
    • Spettroscopia 3D
    • Correzione prospettica del movimento

    Tutte le tecniche citate sono state analizzate valutandone i principi di funzionamento, i campi di applicazione, il tempo di riduzione e i nomi commerciali con la quale queste tecniche sono state implementate dalle aziende produttrici. Vengono chiariti i vantaggi e gli svantaggi di queste tecniche, con delle tabelle che sintetizzano i benefici e le applicazioni delle tecniche di Fast MRI, e i loro principali svantaggi con le possibili soluzioni.

    Molte di queste tecniche sono oggi commercialmente disponibili e stanno migliorando la fattibilità e la sicurezza degli esami RM su pazienti pediatrici. Queste tecniche utilizzate con altre ben note, come la tecnica “feed and swaddle” , possono ulteriormente ridurre la durata, la profondità e il bisogno di una sedazione e/o anestesia in neonati e pazienti pediatrici.

    Tuttavia, l’accuratezza diagnostica di molte di queste tecniche è ancora da stabilire completamente in questa popolazione particolarmente complessa. Ulteriori studi clinici sull’affidabilità e sulle limitazioni di queste tecniche sono necessarie come passo successivo.

    References

    1. Jaimes C, Kirsch JE, Gee MS. Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 2018;48(9):1197–1208.
    2. Heller BJ, Yudkowitz FS, Lipson S. Can we reduce anesthesia exposure? Neonatal brain MRI: Swaddling vs. sedation, a national survey. J Clin Anesth 2017;38:119–122.
    3. Jaimes C, Gee MS. Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 2016;46(6):916–927.
    4. Slovis TL. Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 2011;41(S2,Suppl 2):514–516.
    5. Wilder RT, Flick RP, Sprung J, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009;110(4):796–804.
    6. Creeley CE, Dikranian KT, Dissen GA, Back SA, Olney JW, Brambrink AM. Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology 2014;120(3):626–638.
    7. Jaimes C, Murcia DJ, Miguel K, DeFuria C, Sagar P, Gee MS. Identification of quality improvement areas in pediatric MRI from analysis of patient safety reports. Pediatr Radiol 2018;48(1):66–73.
    8. Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user’s guide. RadioGraphics 2005;25(5):1279–1297.
    9. Hamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc 2017;101:71–95.
    10. Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging 2012;36(1):55–72.
    11. Feng L, Srichai MB, Lim RP, et al. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 2013;70(1):64–74.
    12. Willinek WA, Gieseke J, von Falkenhausen M, et al. Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. Rofo 2004;176(1):21–26.
    13. Breyer T, Echternach M, Arndt S, et al. Dynamic magnetic resonance imaging of swallowing and laryngeal motion using parallel imaging at 3 T. Magn Reson Imaging 2009;27(1):48–54.
    14. Doria AS, Chaudry GA, Nasui C, et al. The use of parallel imaging for MRI assessment of knees in children and adolescents. Pediatr Radiol 2010;40(3):284–293.
    15. Zhang T, Chowdhury S, Lustig M, et al. Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 2014;40(1):13–25.
    16. Eutsler EP, Khanna G. Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol 2016;46(6):858–872.
    17. Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55(3):549–556.
    18. Li M, Winkler B, Pabst T, Bley T, Köstler H, Neubauer H. Fast MR Imaging of the Paediatric Abdomen with CAIPIRINHA-Accelerated T1w 3D FLASH and with High-Resolution T2w HASTE: A Study on Image Quality. Gastroenterol Res Pract 2015;2015:693654.
    19. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 2016;75(1):63–81.
    20. Todd N, Josephs O, Zeidman P, Flandin G, Moeller S, Weiskopf N. Functional Sensitivity of 2D Simultaneous Multi-Slice Echo-Planar Imaging: Effects of Acceleration on g-factor and Physiological Noise. Front Neurosci 2017;11:158.
    21. Fritz J, Fritz B, Zhang J, et al. Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee. Invest Radiol 2017;52(9):529–537.
    22. Benali S, Johnston PR, Gholipour A, et al. Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients. Skeletal Radiol 2018;47(6):821–831.
    23. Runge VM, Richter JK, Heverhagen JT. Speed in Clinical Magnetic Resonance. Invest Radiol 2017;52(1):1–17.
    24. Cauley SF, Polimeni JR, Bhat H, Wald LL, Setsompop K. Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. Magn Reson Med 2014;72(1):93–102.
    25. Hoge RD, Badhwar A, Doyon J, Ostry D. Improving Sensitivity and Specificity in BOLD fMRI Using Simultaneous Multi-Slice Acquisition. MAGNETOM Flash 2015;63:65–69.
    26. Setsompop K, Cohen-Adad J, Gagoski BA, et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012;63(1):569–580.
    27. Obele CC, Glielmi C, Ream J, et al. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T. Abdom Imaging 2015;40(7): 2323–2330.
    28. Taron J, Martirosian P, Kuestner T, et al. Scan time reduction in diffusion-weighted imaging of the pancreas using a simultaneous multislice technique with different acceleration factors: How fast can we go? Eur Radiol 2018;28(4):1504–1511.
    29. Longo MG, Fagundes J, Huang S, et al. Simultaneous Multislice-Based 5-Minute Lumbar Spine MRI Protocol: Initial Experience in a Clinical Setting. J Neuroimaging 2017;27(5):442–446.
    30. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42(5):963–969.
    31. Zhang L, Tian C, Wang P, et al. Comparative study of image quality between axial T2-weighted BLADE and turbo spin-echo MRI of the upper abdomen on 3.0 T. Jpn J Radiol 2015;33(9):585–590.
    32. Lee JH, Choi YH, Cheon JE, et al. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique. Pediatr Radiol 2015;45(6):840–846.
    33. Lavdas E, Mavroidis P, Kostopoulos S, et al. Improvement of image quality using BLADE sequences in brain MR imaging. Magn Reson Imaging 2013;31(2):189–200.
    34. Schär M, Eggers H, Zwart NR, Chang Y, Bakhru A, Pipe JG. Dixon water-fat separation in PROPELLER MRI acquired with two interleaved echoes. Magn Reson Med 2016;75(2):718–728.
    35. Chandarana H, Block TK, Rosenkrantz AB, et al. Freebreathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 2011;46(10):648–653.
    36. Chandarana H, Block KT, Winfeld MJ, et al. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 2014;24(2):320–326.
    37. Bangiyev L, Raz E, Block TK, et al. Evaluation of the orbit using contrast-enhanced radial 3D fat-suppressed T1 weighted gradient echo (Radial-VIBE) sequence. Br J Radiol 2015;88(1054):20140863.
    38. Wu X, Raz E, Block TK, et al. Contrast-enhanced radial 3D fat-suppressed T1-weighted gradient-recalled echo sequence versus conventional fat-suppressed contrast-enhanced T1-weighted studies of the head and neck. AJR Am J Roentgenol 2014;203(4):883–889.
    39. Hu HH, Benkert T, Jones JY, et al. 3D T1-weighted contrastenhanced brain MRI in children using a fat-suppressed golden angle radial acquisition: an alternative to Cartesian inversion-recovery imaging. Clin Imaging 2019;55:112–118.
    40. Hu HH, Benkert T, Smith M, et al. Post-contrast T1-weighted spine 3T MRI in children using a golden-angle radial acquisition. Neuroradiology 2019;61(3):341–349.
    41. Armstrong T, Ly KV, Murthy S, et al. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multiecho 3-D stack-of-radial MRI technique. Pediatr Radiol 2018;48(7):941–953.
    42. Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for body MRI. J Magn Reson Imaging 2017;45(4):966–987.
    43. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58(6):1182–1195.
    44. Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lustig M. Improved pediatric MR imaging with compressed sensing. Radiology 2010;256(2):607–616.
    45. Cheng JY, Zhang T, Ruangwattanapaisarn N, et al. Freebreathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging 2015;42(2):407–420.
    46. Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 2016;75(2):775–788.
    47. Chandarana H, Feng L, Ream J, et al. Respiratory Motion- Resolved Compressed Sensing Reconstruction of Free- Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging. Invest Radiol 2015;50(11):749–756.
    48. Chandarana H, Doshi AM, Shanbhogue A, et al. Threedimensional MR Cholangiopancreatography in a Breath Hold with Sparsity-based Reconstruction of Highly Undersampled Data. Radiology 2016;280(2):585–594.
    49. Lu SS, Qi M, Zhang X, et al. Clinical Evaluation of Highly Accelerated Compressed Sensing Time-of-Flight MR Angiography for Intracranial Arterial Stenosis. AJNR Am J Neuroradiol 2018;39(10):1833–1838.
    50. Li B, Li H, Dong L, Huang G. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence. Magn Reson Imaging 2017;43:129–135.
    51. Feng L, Grimm R, Block KT, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2014;72(3):707–717.
    52. Toledano-Massiah S, Sayadi A, de Boer R, et al. Accuracy of the Compressed Sensing Accelerated 3D-FLAIR Sequence for the Detection of MS Plaques at 3T. AJNR Am J Neuroradiol 2018;39(3):454–458.
    53. Goebel J, Nensa F, Schemuth HP, et al. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function. J Magn Reson Imaging 2016;44(2):366–374.
    54. Haubenreisser H, Henzler T, Budjan J, et al. Right Ventricular Imaging in 25 Seconds: Evaluating the Use of Sparse Sampling CINE With Iterative Reconstruction for Volumetric Analysis of the Right Ventricle. Invest Radiol 2016;51(6):379–386.